FINAL Draft

Sequentially Successive Identifiers and Their
Relation to Media Exploitation
Bug Report by Kirino

Abstract

| have identified what | believe to be a critical issue in uploaded media’s security. When
POSTing a status through “v1/statuses” there are no checks performed on potential Media
IDs to validate whether the user has access to these images. As Media IDs (I believe) are
generated in a sequentially successive and numerical order, it would be extremely simple

to re-post every uploaded image to the local instance to a private chat.

This would be done by uploading a test image, catching the id and then looping statuses

from 0 up to that ID (or however far back you would wish to go).

Scope Of The Issue

Through testing of the API, | have been able to ascertained six things, which | believe to be

factual about the Pleroma BE:

1. Media IDs are sequentially successive in nature and do not employ any randomness
to their value.
Media IDs are persistent and do not expire
It is possible to validate if a user is meant to be able to access a given Media ID
Media IDs can not be used to easily determine who uploaded the original record
(and in some cases is impossible) by a regular user

5. The POST API request for “v1/statuses” does not utilize this functionality when
checking Media IDs

6. Both statuses and chat messages use the same Media ID “counter”.

The first point | inferred by uploading images through the POST API request “v1/media”, in
every instance they returned the appropriate number which should follow the previous. |

have taken this to mean that Media IDs act in a similar fashion to a counter.

The second point | tested by taking my first post on seal.cafe, which was uploaded April 15,
2023 (https://seal.cafe/notice/AUfI3wH2rkStPoPp0Oy) and attempting to use the Media ID
when submitting a new post (through the POST API request “v1/statuses”), this test was

successful and can be seen here.

The third and fourth points were established by testing with the help of another user, when
accessing information for a given Media ID (via the GET API request “v1/media/{id}") you will
be met with “Access Denied” if you were not the original uploader of this image. If you did
upload the image it will only return a URL and a Description of the image. From this, we can
gather that there is functionality in Pleroma to check if you should be able to access a given
Media ID and that Media IDs can not be used in the API to easily determine the user who
uploaded them.

https://seal.cafe/notice/AUfI3wH2rkStPoPp0y
https://seal.cafe/@Kirino/posts/AZ5Y4brKQUswTtwfiq

The fifth and sixth points were established via testing of the following accounts: Flamer and

Kirino

A third user on the same instance sent a reaction image to the Flamer account (via a private
chat message). Using the GET API request “/api/v1/pleroma/chats/ | was able to fetch the

Media ID: “20671324". | then used the account token for Kirino to publish this private image
(of two other users) on my public timeline (via the POST API request “v1/statuses”), this post

can be found here.

This shows me that both private chats and public statuses use the same pool of image and

that there is no check (on v1/statuses) to ensure a user is allowed to publish the image.

https://clubcyberia.co/users/Flamer
https://clubcyberia.co/users/Kirino
https://clubcyberia.co/notice/AZ5huBd8HhZY1HfDwO

Code Used:

from requests import request

from json import loads
class connection:

def __init_ (self, url, token):
self.url = url

self.token = token

def sendRequest(self, method, url, json=None, files=None):
req = request(method=method, url=f"{self.url}/{url}", json=json, files=files, cookies=self.token)
if req.status_code != 200:
print(req.text)
req.close()
return loads(req.text)

def uploadimage(self):
files = {"file": open("[PATH_TO_IMG]", 'rb")}
imgID = self.sendRequest(method="POST', url='vi/media’, files=files)
return [imgID["id"]]

def postMessage(self, content, img=None):
data = {
"status": content
}
if img is not None:
data.update({"media_ids": img})
req = self.sendRequest(method='"POST', url='v1/statuses', json=data)

return req

token = {"__Host-pleroma_key": [PLACE TOKEN HERE]}

con = connection('[URL)/api', token)

Using this to get a rough estimate of the latest media id

print(con.uploadimage())
Testing an image upload of two other user's private message
con.postMessage("Image test.", ["20671324"])

Potential Fixes

As the logic already exists to see if a user was the original uploader of an image, a hot fix
would be simply adding that check to “v1/statuses” and any other POST API request which
allows image uploads. In the long term, a potential solution would be to check where the
Media ID record was first found (either in a status which was set to public or a private
status / chat message) and determine whether or not this should be allowed to be

uploaded.

