Wide Range
Fiber lasers have a wavelength of 1.06 microns, which is 10 percent smaller than that of a CO2 laser beam. With its much smaller wavelength, the fiber laser produces a beam that is much more easily absorbed by the reflective material; a CO2 laser is much more likely to reflect off the surface of these materials. Because of this, fiber laser cutting machines can cut brass, copper, and other reflective materials. It should be noted that a CO2 laser beam that reflects off the material can not only damage the machine’s cutting lens, but also the entire beam path. Using a fiber-optic cable for the beam path removes this risk.
The other factor to keep in mind is that the traditional method of checking for bows and twists in the tube can take up to five or seven seconds before cutting commences. With the traditional means of touch sensing, you have to trade productivity for accuracy. Again, in the age of fiber laser cutting, this can seem like a lifetime, but working with tube is not as simple as working with sheet metal.